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AbItnct-The asymptotic method of multiple scales is used to construct a continuum theory with
microstructure for the linear elastodynamics of a periodically laminated medium. The resulting theory is in
the form of a homogeneous binary mixture theory of micromorphic materials with a common director
oriented normal to the interfaces. The model contains nine conservation equations-six for the linear
momenta of both constituents and three for the director momentum. The asymptotically derived con·
stitutive equations contain mixture properties which. in contrast to phenomenoJoaical theories, are
determined solely from the properties of the individual constituents and their volume fractions. The mixture
conservation and constitutive equations are complemented by an appropriate set of boundary conditions
determined by a variational procedure.

The efficacy of the model is assessed by comparison of predicted and exact phase velocity spectra for
waves propagating at oblique incidence to the layers. The excellent agreement observed indicates that the
model is useful for studying the dynamic behavior of laminated composites. Further, the method of multiple
scales appears to provide an effective approach to the accurate determination of the large scale behavior of
a material which exhibits small scale periodic heterogeneity.

INTRODUCTION
Scope
In this paper an asymptotic method is used to develop a three-dimensional continuum the
ory with microstructure for the linear elastodynamics of a periodically laminated composite. The
model, which combines the desirable features of several existing theories[1,2], has the form of
a homogeneous binary mixture theory of micromorphic materials with a common director.

Model construction is based upon the observation that, along a direction normal to the
laminae, there are two length scales over which significant variations in displacement and stress
profiles occur and that these scales differ by at least an order of magnitude in most problems of
practical interest. This observation suggests the use of the asymptotic method of multiple
scales[3, 23] to transform the original three-dimensional problem into one with four in
dependent variables, the new variable being a microcoordinate along the direction normal to the
layers. Since the material properties then become functions of the microcoordinate only and
are periodic, the transformed problem takes the form of a "generalized wave guide"-type
problem which is easily amenable to solution via an asymptotic procedure which is developed
here as an extension of the regular asymptotic method used by Hegemier[4-6] for con
struction of continuum models of wave guide-type propagation in composite materials.

Subsequent to the derivation of the differential equations of the mixture theory, a functional
is constructed, the extremization of which yields the mixture equations as the Euler equations.
The resulting variational principle furnishes appropriate boundary data for the mixture thtory.
Finally, the efficacy of the proposed theory is tested by comparison of predicted vs exact phase
velocity spectra for time harmonic waves propagating at oblique incidence to the laminae
interfaces.

tResearch was sponsored by Air Force Office of Scientific Research.
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Relation to other theories
Although the literature on the mechanics of materials with microstructure is too large to be

reviewed here, it is appropriate to refer to some investigations which are perhaps typical. In
probably the earliest attempt to model materials with internal structure, the concept of directors
was introduced by the Cosserat brothers [7]. The concept was subsequently generalized by
Ericksen and Truesdell [8l. Although it was introduced much earlier, the mixture theoretic
formalism for elastodynamic behavior of multi-component materials was spotlighted by the
works of Green and Naghdi[9], Bowen[lO] et al. As a natural extension of these two
concepts, Allen and Kline [II] and Twiss and Eringen [12] explored mixtures of materials each
of which was assigned a separate director. It is emphasized that all these studies were based
upon the macroscopic, phenomenological point of view wherein little information is assumed or
used concerning the material microstructure. Although such investigations eminently serve the
purpose of elucidating the qualitative behavior to be expected of materials with microstructure,
their utility for composite materials is severely limited by the fact that they necessitate the
performance of (considerable numbers of) experiments for the determination of the constants
appearing in the constitutive equations. This is the case even when the geometries and
properties of the composite constituents are well-defined.

Evidently, the foregoing limitation can be overcome only if construction of a macroscopic
theory is based upon micromechanical considerations. Examples of such approaches can be
found in the works of Bedford and Stern [13], Sun et al.[l] and Hegemier et al.[14]. Of course,
the technique described by Hegemier[5] and used in a number of studies of wave guide-type
problems [4, 6, 15] was developed with the explicit objective of including microstructural details
in the macroscopic model of composite materials. As was noted previously. this paper describes
an extension of this procedure to problems which are not of the wave guide-type. Thus, the
method presented herein can be viewed as a special procedure for solution of a restricted class
of homogenization problems[16, 17].

FORM ULAnON

Consider a domain fJ which contains a large number of (two) alternating linearly elastic
homogeneous laminae with perfect bonds as illustrated in Fig. I. A typical cell, which
represents the geometrical microstructure of the composite, is shown in Fig. 2. Let· a rec
tangular Cartesian reference system ii' i 2, i 3be selected with X3 normal to the middle plane of
the central cell lamina and i 2, X3 in this plane.

For notational convenience forms ( )(al, a =1,2 will denote quantities associated with
material a. The usual Cartesian indicial notation will be employed where Latin indides range
from I to 3 and repeated indices imply the summation convention, unless otherwise noted. In

o

Xl

Fig. I. Geometry and coordinate system.
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T
Fig. 2. Unit cell.
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addition, the notations ( Va a( )/aXj and n == a( )/at will be employed where t represents
time. Quantities of the form nand ( ) denote dimensional and nondimensional variables,
respectively.

With the aid of the foregoing notation, the governing relations for the displacement vector
ala, and the stress tensor ii~j' in the two constituents are:

(a) Equations of motion:

(1)

where pa' is the mass density;
(b) Constitutive relations:

where ACa" {iCa) are Lame's constants and /ijj is the Kronecker delta;
(c) Interface continuity conditions:

ap' = apI, iiW = iiW on interfaces.

(2)

(3)

For complete specification of an initial boundary value problem, one must also specify:
(d) Initial conditions at i =0 and appropriate boundary data along the boundary of D.
Conditions (aHd) define a well-posed initial boundary value problem. The direct solution of

this problem is, however, extremely difficult due to the large number of interfaces in most
cases of practical interest. The objective of the subsequent analysis is to alleviate such
difficulties by deriving a set of partial differential equations with constant coefficients whose
solution can be utilized to approximate the solution of the problem posed by (aHd). This effort
is facilitated by a judicious scaling of both dependent and independent variables. To this end
the following quantities are introduced:

A typical macrosignal wavelength or macrodimension;
! composite cell length;

CCIft" Pclft' reference wave velocity and macrodensity;
- - 2Eem ,=Plm,CCm) reference composite elastic modulus;
Ic.) =AICtlft) typical macrosignal travel time;

E =!1/A ratio of micro·to·macrodimensions.

With the aid of the foregoing notation, the following nondimensional quantities are now
defined:

(x" X2, X3) =(i" X2' X3)/,.\", t =if ~Ift"

ula' = ala)/A. u~j) = ii~a,/Eem" i, j =1- 3,

pCa' =pa'/Pcm), (A.,.,,)ca, =(A, {i)ca'/Erlft ,.

(4)
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With the variables defined according to (4), the material properties are seen to be periodic in
the x3-direction with period E. Thus, the field variables are expected to vary significantly over
two length scales along the xl-direction. One such scale is. of course, of the order of the signal
wavelength which is unity in the scaled system. The other length scale is of the order of the cell
dimension E. This suggests a two-variable expansion procedure [3]. Therefore, new independent
variables X4. x! are introduced according to

X4= <p-I(E)X). <p(E)-+O as E-+O.

X!=r/I(E)X), r/I(E)-+1 as E-+O.

For purposes of the present analysis it will suffice to select

All field variables are now functions of X4 as well as the macrovariables Xi (i =1-3), i.e.

For any field variable (6), one obtains

(5a)

(5b)

(6)

(11)

In what follows the superscript * will be dropped for simplicity.
On introduction of Xi' X4, and the nondimensional variables (4), eqns (lH3) take the form

Uj{l) = u;(2), oW =uW on interfaces. (10)

For the sake of notational convenience, the dependence of the field variables on all four
independent variables Xi, X4 has not been explicitly stated in (8Hl0) and the notation ( ) j :

o( )/OXi' ( '> E a( )/at has been utilized. .
Equations (8HJO) can be viewed as a set of partial differential equations in Xi' X4 and t, in

which the coefficients are independent of Xj, t, but are periodic functions of X4 with a unit
period. If the domain of definition of (8HIO) was such that - x < X4 < x. and if the initial
conditions were quiescent or periodic in X4, it would follow from F10quet Theory[19, 20] that
there exists a set of solutions of (8HIO) which are periodic in X4 with unit period length. This
periodicity condition is expected to continue to hold, at least in the interior of the domain in
which the solution is sought, so long as the length of the domain in the x3-direction is
sufficiently large. Consequently, eqns (8H10) will be analyzed in what follows based upon the
premise that all field variables are periodic in the microcoordinate X4, with the understanding
that such an analysis may be valid only at points sufficiently far removed from the boundaries
of the domain in which the solution is to be obtained.

As a result of the aforementioned periodicity condition, it is necessary to treat only a typical
unit cell associated with the x4-direction. With no loss in generality (the particular choice of the
unit cell is immaterial so long as the periodicity condition is imposed) the cell may, for
convenience, be defined by

[ I n(l)] [ In(l) I]
A(I)s X4/X4/<T' A(

2
);;;e X4 T<lx41<2'

In (J I), Ala) denotes the domain occupied by material a in the cell and n(o) is the volume
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fraction of material a; the latter satisfy

IS9

(12)

With the above choice of the unit cell, the interface condition (10) must be satisfied at
Ix.1 =n(l)/2 and the periodicity condition is given by

I(xi' -1/2, t; E) =I(xj, 1/2, t; f), (13)

where I represents any field variable.
The formulation of the problem is now complete. The key elements introduced thus far are

(1) the microcoordinate x. and (2) the periodicity of all field variables in this microcoordinate. It
will be demonstrated in the following analysis that the introduction of the additional in
dependent variable in fact simplifies the problem considerably since it facilitates the deter
mination of the field-quantity variations within the unit cell and allows eventual elimination of
the microcoordinate by a suitable averaging process defined over a unit cell.

It should be noted here that eqns (8)-(10) as well as the periodicity condition can be derived
by using an alternate definition of x. based upon the concept of a movable origin which was
introduced by Burgers[l6]. Thus, formally, the results presented below can also be derived on
the basis of the concept of a moveable origin.

MIXTURE EQUATIONS

Binary mixture equations for the composite can be immediately obtained by introducing an
averaging operation according to

(14)

Upon averaging (8) with use of the periodicity condition for the stress components 0'3i, one
obtains the momentum equations

(15)

where P; denotes the components of an interaction (body) force vector per unit volume, given
by

(16)

In (15), the definitions for "partial" quantities,

(17)

have also been utilized.
The momentum eqns (15) are complemented by mixture constitutive relations obtained by

averaging (9) and applying the periodicity condition; this yields

where

(l8b)

and

(18c)

ss Vol. 17. No. 2-8
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The microcoordinate-independent quantities 53i (i =1.2.3). which appear naturally in the
constitutive equations as a consequence of the averaging process utilized. shall be termed
director displacements associated with a director (vector) oriented along the X3-axis. In the
subsequent analysis, the director displacements will be treated as dependent variables in
addition to the average displacements Ui(GQ).

In order to "close" the mixture relations. it is necessary to construct (a) appropriate
conservation equations associated with director displacements and (b) constitutive equations for
Pi and for the stress-type quantities associated with the director displacements. For this
purpose an asymptotic procedure will be utilized which is an extension of the regular
asymptotic method described by Hegemier[5].

ASYMPTOTIC ANALYSIS

The premise that the composite macrodimension is much larger than the microdimension,
i.e. E « I, and the form of the scaled eqns (8H10) suggest the expansion of the dependent
variables in the asymptotic series

(19)

If (19) is substituted into (8HIO) and the coefficients of different powers of f are equated to
zero, a sequence of problems is obtained. The first of the equations in this sequence furnishes

(20)

Thus the quantities u~1Io), uir$ are independent of the microcoordinate X4, i.e.

(21)

where the zeroth order expansions of the interface conditions (10) have also been utilized. The
remaining system of equations obtained from (8) to (l0) and (l9) are

(22a)

(22b)

Because of (21), the higher order terms in (19) must satisfy a normalization condition; a
convenient choice is

From (21), (22) one concludes that, for n ~ 1,

u!rill) and u~11211) are even functions of X4,

uirill-Il and u~11211-1) are odd functions of X4.

(23)

(24a)

(24b)

These properties follow from the choice of the unit cell, i.e. from the symmetrical distribution
of material properties within it. In view of (24) and the periodicity condition, one also obtains

(25)

To be added to the above are the interface conditions for continuity of displacement and
traction vectors on X4 =± n(l)/2. These are obtained from (10) and have the following form:

U(1l - U(2) (I) - (2) on x - + nOl/2
1(11) - 1(11)' U3i(1I) - U3i(lI) 4 - - • (26)
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FIRST ORDER DISPLACEMENT FIELD AND CONSERVATION
OF..DIRECTOR MOMENTUM

Equations (20) and (22b), with n =0, furnish

The function B(a) is related to the director displacement by use of (l8c) with the resultt

where

g(l)(X4) =-=nX
(4) , g(2)(x )- 1 [~ x]

_III 4-nm 2X4- 4'

\6\

(27)

(28)

(29)

Equations (23, 25, 26) were also employed in the derivation of (28, 29).
The introduction of the dependent variables 53; necessitates additional conservation rela

tions. These are obtained by taking g-moments of (22a) with n = 1 and

(30)

Thus, from (29, 30, 22a) one obtains

(31)

where

(32a)

(32b)

(33)

The conservation equations represented by (31) contain the additional variables MW and
RW. The constitutive relations for these quantities are developed in the following together with
those for Pi-

MIXTURE THEORY BASED ON TWO LOWEST ORDER SYSTEMS

Constitutive nlations for interaction forces Pi
Equations (218) for n =0, together with (21), yields

(a) - c(a)( t)0'3i(l).4 - i X.. •

If (34) is now integrated over A(a) and use is made of (16), (19), (24), (25) one obtains

whence

Moreover, the constitutive eqn (22b) together with (28) furnishes

(34)

(35)

(36)

tFor this calculation "\-' were represented in (lk) by terms up to and inc:\udilll 0(,2) in (19).
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Equations (36), (37), which define a boundary value problem for the displacements ulii) are 10
be complemented by the boundary conditions obtained from (23), (25) and the interface
conditions (26). Since the differential equations for ulM, obtained from (36) and (37) are
decoupled for each i = 1,2,3, and due to the form of the forcing terms in the boundary value
problems for ulM, the solutions may be obtained in the form

ulM =P jV/al(X4) +(S33 •• + S3i.3)V~(X4)' i =1,2; no sum on i,

la) - P (al( ) +S *(a)() +S *(al() . - I 2U3(2) - 3V3 X4 3j.jW3 X4 33,lV3 X4, J - , •

(38)

(39)

The differential equations, boundary and interface conditions for via), v~'al, w!,a l constitute
so-called "microstructure boundary value problems" (MBVPs). These are obtained by sub
stituting (38), (39) into (36), (37) and the appropriate interface and boundary conditions (23),
(25), (26). Since the MBVPs are elementary, only the solutions are presented below:

i = 1,2,3,

where

Equations (28), (38) and (39) furnish the displacement fields:

uia) =u/(O) +ES3g(a)(X4) +E2{P/V/a)(X4) + (S33,/ + S3/,3)v~la)(X4)}

+O(E3
), i= 1,2, no sum on i;

U3(a) =u3(O) +ES33glal(X4) +E2{P3V3(al(X4) +S3jJW!(al(X4)

+ S33,3V~(al(X4)} +O(E\ j = t, 2.

(4Oa)

(4Ob)

(4Oc)

(4Od)

(4Oe)

(4Ia)

(4tb)

If eqns (41) are now averaged and U/IO) is subsequently eliminated, where i =1-3, the
constitutive relations for the interaction terms are obtained as

(
UPGl _ UJIG»)

p/ =a/ ' E2 ' +P/(S33,; + S3j.3), i =1,2, no sum on i;

Here

aj = 1/(vpGl- V/,Gl),

P; = (V~(\Gl - v~{2Gl)a;, no sum on i,

'Y3 =(W!(\Gl - w!12G»a.

Finally, substitution of (40) into (43) furnishes

a; = 12~11I)' i = 1,2; a3 =12E(1I1'

f3; = ~lll)' f33 =ElII ), 13 =GOEIII )

(42a)

(42b)

(43)

(44)
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(45)

Additional constitutive relations
If the solutions of the MBVPs are used in (22b) to determine the first order stress profiles

O'~iih, then the moment defined by (32a) can be obtained from (37H40); the result, with Pi

related to the displacements through (42), is

M - ~ Mlal - ~ n(a) P - Pi • - I 2 3'33i - ~ 33i - ~ -12 i -12' ,- , , ,
a-I a-I

M3ii =±MW =±[1
1
2 8ii(G1cap )S3U +Go(aPlP3)

a~1 cr-.

+ 112 ,.,.laPl(S3i.i +S3i.i)] =~ (G1Slk•k +GOP3)

I
+ 12""cml(S3i.i + S3i.i), i, j, k = 1,2;

M3ii =M3ji, i, j =1,2,3.

The quantity Go("') above is defined by (45c) and

GI(ap) =2,.,.lalA(apl/(A +2,.,.)(al, ,.,.(OPI =n(al,.,.(al;

2 2
G. =L G.lapl; ""(m) =L ,.,.(aPl.

0-' a-t

(400)

(46b)

(46c)

(46d)

(46e)

It now remains to obtain a relation between R3i defined by (32b) and the dependent
variables. To accomplish this, the interface. condition (26) with n =2 will now be used.
Accordingly, it is necessary to calculate 0'~112)' The calculation is facilitated if it is observed that,
on using (22b) with n =I, (28), (29) and (38H40), eqn (22a) can be written for n =1 in the form

(al - D(a)( t) lal( )0'3iC21.4 - i Xi, g X•• (47)

The functions Dial, which are independent of the microcoordinate, can be related to R~1>'

defined by (32b), by taking the gCa)-moment of (47); this procedure yields

(48)

whence (47) reduces to

(49)

The solution of (49), with the boundary condition (23) and the interface condition (26), is

(50)

where the functions q(O' are given by (~).

With the aid of (50) and the first order stress profile 0'~1111' obtained from (37) and (38H40),
the stress microstructure is found to be

(51)
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If (51) is now averaged for each a and if 003;(0) is eliminated from the resulting equations, the
following remarkably simple result is obtained:

(52)

Equation (52), with oo~'iQ) related to the displacements through (18a), is the constitutive relation
for R3;.

The foregoing analysis completes the formulation of the basic differential equations for the
mixture theory. The results are summarized in the next section,

SUMMARY OF MIXTURE EQUATIONS

The basic equations of the mixture theory are (a =1,2; i, i, k =1,2,3 unless noted other
wise):

(a) Equations of motion:

M3ilJ-~ 531 =- R31, M3J1 =M3IJ ;

(b) Constitutive equations:

oo~tIP) =[AltIP)Ut/)8jJ + p(tIP)(u\jQ) + u~j"»] +(- W+I(Ala)5nc5ii

+j.Lca)(c5j353; + c51353i)];

8.. G &M3i;='fi(G153k'k+ oP3)+ Ii (53I,i+ 53i,/)' i,j,k=I,2;

M));=P;!12, i=I,2,3;

(U'<2111 - upal)
Pi =Ctj , E2 ' + (3;(533.; + 53;.3), i = I, 2,

(15)

(31)

(18a)

(46b)

(46a)

no sum on i; (42a)

(u (211) - U (1111)
P3 =0'3 3 E2 3 + {33533.3 + 1353J,i; i = 1,2; (42b)

R3; = (oo~7"1 - oo~l"l)/E2. (52)
Here

2 2
Go= L ACtIP)/(A +2p)la), G, =2 L ACtIP)pCa)/(A +2p)la l ;

a-I .-1

0'1 = 12j.Llnl' {3; = j.Llnl' i = I, 2,

0'3 = 12Elnl, (33 = Eln ), 13 = GOEln );

2 2
j.Lin!) =L nCal/iJ.lal, Elnl) = L nCal/(A +2j.L)CtJl l,

a-I a-I

2
Alapl=nCa'ACtJll, j.LCtlPl=nC/JIlj.Lla', Plm,= L j.LI/JIPl.

a-I

(45c,46d)

(44)

(45)

(l8b,46e)

If the stress-type variables are eliminated by use of the appropriate constitutive equations,
the above set can be reduced to nine differential equations with constant coefficients in the nine
unknowns ul/JIG), 53;, i =1,2,3, a =1,2. All coefficients in these equations are determined once
the elastic properties of the constituents and their volume fractions are known.

VARIATIONAL PRINCIPLE AND BOUNDARY CONDITIONS

An important question that has not yet been addressed is that of appropriate initial and
boundary data for the solution of the mixture equations. This question can evidently be
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completely resolved only by a boundary layer analysis wherein the edge-zone solutions are
matched with the mixture solutions. However, the need for a boundary layer analysis can be
alleviated to some extent by use of a variational approach to determine the appropriate
boundary data for the mixture differential equations. Such an analysis, which is similar to that
used for plate and shell theories in elasticity, is presented in this section.

For purposes of constructing a variational principle, it will be convenient to introduce the
following matrix notation:

(53)

where

(54)

(55)

where

I
(A+21L)(apI if ;=j=I,2,3,
A(ap) if ;¢j and Isi,js3,
p,laPI if i=j=4,5,6,
o otherwise;

/

GI+G02E(ftl+ 2p,(III) if i=j= 1,2,

12 E(ftl if. i=J=.3, ..
? L;j = GoE(ftl. If. l~ ] and. lor J== 3,

P,(III1 If 1= J= 4, 5, 6,
G1+G0

2E(ft), i?':j and i,j= 1,2,

(56)

(57)

(58)

Equations (57) and (58) define 6x 6 matrices of material constants while eqns (53) and (55)
represent the macro- and microstrain components, respectively.

Energy density-type quantities are now defined according to (a =I or 2)

v(aal =-21e(alrllr'Ke(al + ±(-OO+153i [(P,(ftl + P,(01)u~3GI
i-'

+ (GoE(1I.) + p,(al)u~~rll + (-1)a+1533[(p,(ft) + A(ol)(eW + e~1 - (E(ft) + [A +2p,1(aleWl,

2V(\2)=~ [~(U$IG)_UJ2Gh2]+~ [~(52 +52 )+A(a)+2p,(O 2] T~E-~ I I J .t:J n(ol 31 32 n(or S33 + IC LIC.
•-J 0-1

With the aid of the foregoing notation, the functional

is introduced, where aDs is the part of the boundary of D on which the traction vector-type
quantities nal and M3; are prescribed, and dO" denotes the elemental area on the boundary. The
precise relationship between na

) and M3i on the one hand and the stress components O"~I and
M3/J on the other, is obtained by the requirement that, with (53H59) as definitions, n be an
extremum with respect to ulaG) and 53;. This leads to the differential equations of the mixture
theory in D, and appropriate boundary conditions on aD, all as the Euler equations of the
variational problem.
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Following substitution of the various definitions in (60), performing the first variation of n
with respect to u/ad) and 53;. and using Green's theorem, one obtains

6n = - Jr J±[± 6ulad )() +653;()] dXI dX2 dx)
JD rEI a-I

+§ {± «(J'j~ap)Jlj - T;'o»8ulaQ
) +(M3j;Jlj - M);)653;} du

ilDs 0"'1
(61)

where the coefficients of ou/ao
) and 8S); in the volume integral are precisely the differential

equations of the mixture theory without the inertia terms. In the surface integral of (61), JI;

denotes the components of the outward normal to the surface, and the modified stress
components are defined as

where

m'=LK,

(62)

(63)

(64)

It thus follows from (61) that the prescribed traction-type quantities are of the form uj~ap}"i and
M]jiilj. Thus, based on the foregoing analysis. it is concluded that on aD one must prescribe the
quantities

u/ao) or U'j;ap)ilj.

53; or M3jil'j.
(65)

It is of interest to note that the modified partial stress tensor (T~aP) is not symmetric. This
result is consistent with the theory of elasticity with couple stresses.

With regard to the question of appropriate initial data to be used with the mixture theory,
one could appeal to Hamilton's principle. This, however, is not necessary since only the second
derivative with respect to,time appears in the mixture equations, as in the theories for
homogeneous media. Consequently, it is appropriate to prescribe

(66)

RECOVERY OF MICROSTRUCTURE

Formulation pf the mixture theory is now complete. The macroresponse of a laminated
medium is obtained. by solving the differential equations of the mixture theory together with
appropriate initial boundary data consistent with (65) and (66). Although the solution furnishes
only averages of the field quantities, the fields ulad'(x", t), S3i(Xb t) can be used to recover the
microstructure by the following procedure. First, by averaging (41a) and (41b) one obtains

UI(O) = U~"II) - f2[PIV~"'II) +(Su.; +S3/J) v1(ad~,

; = 1,2; no sum on ;; (67a)

(67b)

Next, the quantity Pi is obtained from (42). Finally, U;(O), obtained from (67), is used to compute
the displacement microstructure, correct to O(f~, from (4J).

To determine the stress microstructure, one first obtains from (31,32),

(68)



A mixture theory with a director for linear elaslodynamics

where MW is obtained from (46b). Further, the average of (51) yields

_ laa) 12 2[R~11 (2al +R\\! ~ ]
0'3;101 - 0'31 - E nlal1 q T °a2 •

Finally, the stress microstructure, correct to 0(E2
), is calculated from (51).
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(69)

EXACT VS MIXTURE PHASE VELOCITY SPECTRA

Propagation at olbique incidence in plane strain
In an attempt to test the efficacy of the mixture model, the phase velocity spectra of the

mixture theory have been compared with the exact results obtained by Sve[l8] for time
harmonic waves propagating at an arbitrary angle of incidence in the plane normal to the
material interfaces. Such waves are obtained for the case of plane strain (U2(aa) =0, 5 32 =0) by
assuming motion of the form

IUllaa)II Ulla)1U laa) Ula)5
31

= ~ksl exp [ik(xi cos 8+X3 sin 8) - iwt].

533 tks3

(70)

Substitution of (70) into the mixture eqns OS), (31) written in terms of displacements by use
of the constitutive relations, leads to the eigenvalue problem

(71)

where Q is a 6x 6 matrix, the elements of which are functions of the mixture constants and the
wave number, Ek. The vector U in (71) is given by

(72)

Following calculation of the eigenvalues (EW) as a function of (Ek) from (71), the phase velocity
is obtained from

C, = (fW)/(Ek). (73)

The dispersion curves obtained from the mixture theory are shown in FilS. 3(aHf) wherein
spectra from the well-known effective stiffness theory[l], which has a comparable number of

8---..,.,...------.......,
7

6

3

8·0·

- Exact
.-.- Mixture

Theory

°0~~-~2- ..3~~4~~-~6

«knlll

FII. 3(a). Phase velocity spectra for 8-(1'. (- euet solution; -.-. mixture theory; ---- effective
stilness theory.)
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unknowns, are also shown for comparison of accuracy. The material properties used for the
computation are as follows:

1-'(2)/1-'(1) = 50, A(I)/I-'(I) = 2.33, ,\(2)/1-'(1) = 75,

p(2)/p(\) = 3, n(2) =0.8.
(74)

Figures 3(aHg) exhibit two acoustic modes and an optical mode, the physical interpretation of
which can be found in [1]. In Figs. 3(a)-(g) phase velocities are nondimensionalized by the
shear wave velocity of material 1: C.m=I-'(\)/p(l). As is evident from the comparisons, the
mixture theory is, in general, more accurate than the first order effective stiffness theory. In
order to demonstrate the capability of the mixture theory to model the banded and periodic
structure on the frequency-wave number plane for waves propagating perpendicular to the
layering, another view of Fig. 3(g) is furnished in Fig. 4 where n=EI.mI21• This figure shows that
the mixture theory can model the pass bands and stop bands predicted by the elasticity solution
with reasonable accuracy.

Based on Fags. 3(aHg) it is concluded that the mixture theory is more accurate than the
first order effective stiffness theory. However, a higher order effective stiffness theory is
capable of predicting, with increased accuracy, this dispersion phenomena and a comparison of
the latter with the mixture theory is in order. In Figs. 5(a)-(c) phase velocity spectra have been
calculated by the mixture theory for the case used to exhibit the second-order effective stiffness
theory[21]:

1-'(2)/1-'(\) = 100. ,\(\)/2(,\(\)+ 1-'(1) = 0,35,

,\ (2)/2(A (2) +}L(2) =0,3, P<2)/p(l) =3,

n(2
) =0.8. (75)

It can be concluded from Figs. S(a)-(c) that the mixture theory can predict the dispersion
phenomena as well as the second order effective stiffness theory which, it is noted, requires 12
equations of motion and 8 constraint conditions while the mixture theory only requires 6
equations of motion.

The dispersion curves, Figs. 3(a)-(g), S(a)-(c) are representative of global or macroscopic
motion. As an example of the ability of the mixture theory to predict details of the stress and
displacement profiles, the stress profiles for sinusoidal waves propagating normal to the layers
(8 =9()0 in (70», as predicted by the mixture theory, have been compared with the exact
solution given by Lee [22}. Prior to discussion of this comparison, however, it is noted that, if
the wavelength of the propagating wave is used for nondimensionalization, then the scaled

---Exact
_.-.- MixtUrl~

Tt'l.ory

10.0

11.

t 5.0..---,r----r----r-.,....-..,......""7'!

2 3 4 5 6

eKnlZI

Fig. 4. Frequency vs waVe number for normal incidence.
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wave number is 211' and therefore f =fk/211'. It is also noted[22] that the stress distribution in
the whole space can be obtained from tbe distribution within balf of tbe unit ceJl-a result
which is a consequence of the quasi-periodicity of the FJoquet waves and the antisymmetry of
the stress profile within the unit cell.

The microstructure stress profile comparisons, which are shown in Fig. 6, have been made
for two values of f and two values of tbe ratio of constituent moduli Eo) =,.\ (0)+2p. (0) or p. (0)

corresponding to longitudinal wave propagation or shear wave propagation. For f = 1/8, the
mixture stress profile is almost identical to the exact solution. For f =7/16, the mixture
predictions are still quite accurate, even though the ratio of microdimension to signal
wavelength is close to 1/2. It should be added here that the mixture theory predicts a
continuous stress profile. This feature is absent from the effective stiffness theories; cor
responding results were therefore not presented in Fig. 6.
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Fig. 6. Stress microstructure for normal incidence.

The variation of stress profile in a given spatial domain as the wave passes through that
domain is illustrated in Figs. 7(a), (b) for two values of time. Since these results are based on
Fig. 6, they exhibit the same degree of accuracy. The exact elasticity solution has been obtained
in [22]. The stress profile of the mixture theory is computed by obtaining the eigenvector in (71)
for "3(") and 533 and using the results of (68), (69) and (51) to recover the stress microstructure.

CONCLUDING REMARKS

The asymptotic method of multiple scales has been used to construct a continuum theory
·for the elastodynamic behavior of periodically laminated media consisting of two constituents.
The resulting theory was cast in the form of a binary mixture theory. Comparisons of exact vs
mixture phase velocity spectra imply that good accuracy may be obtained via the mixture
theory for problems where the energy is partitioned primarily into the first two acoustic modes
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Fig. 7(a). Stress profile for normal incidence.
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and where the material microdimension does not exceed one-half the dominant signal
wavelength. For such cases, the theory appears to be an attractive alternative to direct
numerical solution of initial boundary value problems for laminated composites.

It is appropriate to conclude this paper with an elaboration of similarities and the differences
between the approach described herein and the method of homogenization for periodic
composites which has attracted much attention in the recent literature[J6, 17,23-25]. Two
essential aspects of both the methods are the introduction of the microcoordinate and the
assumption of periodicity with respect to this coordinate. A consequence of these features of
the techniques is that no explicit smoothing operation is required, in contrast to the previous
treatments of the laminate problem[J, 2]. However, the main emphasis in this paper has been on
the development of a dispersive theory for dynamic problems, whereas in. most other
studies[16, 17,23,24] the major objective appears to be the asymptotic justification of c1assifical
effective modulus models. Although it is not necessary to resort to a mixture theoretic
formalism for construction of higher order models, and a direct asymptotic approach can easily
be utilized in the manner of [25], such theories typically contain the spatial and temporal
derivatives of the field quantities which are of higher order than second order derivatives that
occur in the mixture theory. Consequently, questions about the specification of appropriate
initial and boundary data in the theories based on the direct approach are more difficult to
resolve than they are in the mixture formulation. An additional advantage of the approach
described in this paper is, of course, the fact that the derived field equations can be interpreted
from a physical point of view in a rather convenient fashion.
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